
Aurora Vision Library 5.3

Introduction

Created: 6/8/2023

Product version: 5.3.4.94078

adaptive-vision.com

Table of content:

Overview

Programming Conventions

Aurora Template Library

https://docs.adaptive-vision.com/5.3/avl/functions/ImageThresholding/ThresholdImage.html
https://www.adaptive-vision.com

Overview

Introduction

Aurora Vision Library is a machine vision library for C++ and .NET programmers. It provides a comprehensive set of functions for creating

industrial image analysis applications – from standard-based image acquisition interfaces, through low-level image processing routines, to ready-

made tools such as template matching, measurements or barcode readers. The main strengths of the product include the highest performance,

modern design and simple structure making it easy to integrate with the rest of your code.

The scope of the library encompasses:

Relation between Aurora Vision Library and Aurora Vision Studio

Each function of the Aurora Vision Library is the basis for the corresponding filter available in Aurora Vision Studio. Therefore, it is possible (and

advisable) to use the Aurora Vision Studio as a convenient, drag & drop prototyping tool, even if one intends to develop the final solution in C++ using

Aurora Vision Library. Moreover, for extended information about how to use advanced image analysis techniques, one can refer to Machine Vision

Guide from the documentation of Aurora Vision Studio.

In the table below we compare the ThresholdImage function with the ThresholdImage filter:

Key Features

Performance

In Aurora Vision Library careful design of algorithms goes hand in hand with extensive hardware optimizations, resulting in performance that puts the

library among the fastest in the world. Our implementations make use of SSE instructions and parallel computations on multicore processors.

Image Processing
High performance, any-shape ROI operations for unary and
binary image arithmetics, refinement, morphology, smoothing,
spatial transforms, gradients, thresholding and color analysis.

Region Analysis
Robust processing of pixel sets that correspond to foreground
objects: extraction, set arithmetics, refinement, morphology,
skeletonization, spatial transformations, feature extraction and
measurements.

Path Analysis
Subpixel-precise alternative to region analysis, particularly
suitable for shape analysis. Provides methods for contour
extraction, refinement, segmentation, smoothing, classification,
global transformations, feature extraction and more.

Profiles
Auxiliary toolset for analysis of one-dimensional sequences of
values, e.g. image sections or path-related distances.

Histograms
Auxiliary toolset for value distribution analysis.

Geometry 2D
Exhaustive toolset of geometric operations compatible with other
parts of the library. Provides operations for measuring distances
and angles, determining intersections, tangents and feature.

1D Edge Detection
Detection of edges, ridges and stripes (paired edges) by the
means of 1D edge scanning, i.e. by extracting and analysing a
profile along a specified path.

2D Edge Detection
Detection of edges by the means of 2D edge tracing, i.e. by
extracting and refining locally maximal image gradients.

Fourier Analysis
Suitable both for educational experimentation and industrial
application, this toolset provides methods for Fourier transform
and image processing in the frequency domain.

Template Matching
Efficient, robust and easy to use methods for localizing objects
using a gray-based or an edge-based model.

Barcodes
Detection and recognition of many types of 1D codes.

Datacodes
Detection and recognition of QR codes and DataMatrix codes.

Hough Transform
Detection of analytical shapes using the Hough transform.

Image Segmentation
Automated extraction of object regions using gray or edge
information.

Multilayer Perceptron
Artificial neural networks.

Optical Character Recognition
Text recognition or validation, including dot print.

Shape Fitting
Subpixel-precise detection of analytical shapes, whose rough
locations are known.

Aurora Vision Library: Aurora Vision Studio:

void ThresholdImage

(

 const Image& inImage,

 Optional<const Region&> inRoi,

 Optional<real> inMinValue,

 Optional<real> inMaxValue,

 real inFuzziness,

 Image& outMonoImage

);

https://docs.adaptive-vision.com/5.3/avl/machine_vision_guide/index.html
https://docs.adaptive-vision.com/5.3/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.3/studio/filters/ImageThresholding/ThresholdImage.html

Modern Design

All types of data feature automatic memory management, errors are handled explicitly with exceptions and optional types are used for type-safe

special values. All functions are thread-safe and use data parallelism internally, when possible.

Consistency

The library is a simple collection of types and functions, provided as a single DLL file with appropriate headers. For maximum readability function

follow consistent naming convention (e.g. the VERB + NOUN form as in: ErodeImage, RotateVector). All results are returned via reference output

parameters, so that many outputs are always possible.

Example Program

A simple program based on the Aurora Vision Library may look as follows:

#include <AVL.h>

using namespace atl;

using namespace avl;

int main()

{

 try

 {

 InitLibrary();

 Image input, output;

 LoadImage("input.bmp", false, input);

 ThresholdImage(input, NIL, 128, NIL, 0, output);

 SaveImage(output, NIL, "output.bmp", false);

 return 0;

 }

 catch (const atl::Error&)

 {

 return -1;

 }

}

Please note that Aurora Vision Library is distributed with a set of example programs, which are available after installation.

https://docs.adaptive-vision.com/5.3/avl/functions/ImageLocalTransforms/ErodeImage.html
https://docs.adaptive-vision.com/5.3/avl/functions/Geometry2DSpatialTransforms/RotateVector.html

Programming Conventions

Organization of the Library

Aurora Vision Library is a collection of C++ functions that process machine vision related types of data. Each function corresponds to a single data

processing operation, e.g. DetectEdges_AsPaths performs a Canny-like 2D edge detection. As a data processing library, it is not particularly object-

oriented. It does use, however, modern approach to C++ programming with automatic memory management, exception handling, thread safety and

the use of templates where appropriate.

Namespaces

There are two namespaces used:

atl – the namespace of types and functions related to Aurora Template Library.

avl – the namespace of types and functions related to Aurora Vision Library as the whole.

avs – Aurora Vision Studio Code Generator equivalents of Aurora Vision Library functions. Not recommended to use.

Enumeration Types

All enumeration types in Aurora Vision Library use C++0x-like namespaces, for example:

namespace EdgeFilter

{

 enum Type

 {

 Canny,

 Deriche,

 Lanser

 };

}

This has two advantages: (1) some identifiers can be shared between different enumeration types; (2) after typing "EdgeFilter::" IntelliSense will

display all possible elements of the given enumeration type.

Example:

atl::Array<avl::Path> edges;

avl::Image image, gradientImage;

avl::DetectEdges_AsPaths(image, atl::NIL, avl::EdgeFilter::Canny,

 2.0f, atl::NIL, 60.0f, 30.0f, atl::NIL, 30.0f, 0.0f, atl::NIL, 0.0f, edges, gradientImage);

Function Parameters

Contrary to standard C++ libraries, machine vision algorithms tend to have many parameters and often compute not single, but many output values.

Moreover, diagnostic information is highly important for effective work of a machine vision software engineer. For these reasons, function parameters

in Aurora Vision Library are organized as follows:

1. First come input parameters, which have "in" prefix.

2. Second come output parameters, which have "out" prefix and denote the results.

3. The last come diagnostic output parameters, which have "diag" prefix and contain information that is useful for optimizing parameters (not

computed when the diagnostic mode is turned off).

For example, the following function invocation has a number of input parameters, a single output parameter (edges) and a single diagnostic output

parameter (gradientImage).

atl::Array<avl::Path> edges;

avl::Image image, gradientImage;

avl::DetectEdges_AsPaths(image, atl::NIL, avl::EdgeFilter::Canny,

 2.0f, atl::NIL, 60.0f, 30.0f, atl::NIL, 30.0f, 0.0f, atl::NIL, 0.0f, edges, gradientImage);

Diagnostic Output Parameters

Due to efficiency reasons the diagnostic outputs are only computed when the diagnostic mode is turned on. This can be done by calling:

avl::EnableAvlDiagnosticOutputs(true);

In your code you can check if the diagnostic mode is turned on by calling:

https://docs.adaptive-vision.com/5.3/avl/functions/2DEdgeDetection/DetectEdges_AsPaths.html
https://docs.adaptive-vision.com/5.3/avl/introduction/ATL.html

if (avl::GetAvlDiagnosticOutputsEnabled())

{

 //...

}

Optional Outputs

Due to efficiency reasons computation of some outputs can be skipped. In function TestImage user can inform function that computation of

outMonoImage is not necessary and function can omit computation of this data.

the TestImage Header with last two optional parameters:

void avl::TestImage

(

 avl::TestImageId::Type inImageId,

 atl::Optional<avl::Image&> outRgbImage = atl::NIL,

 atl::Optional<avl::Image&> outMonoImage = atl::NIL

)

Example of using optional outputs:

avl::Image rgb, mono;

// Both outputs are computed

avl::TestImage(avl::TestImageId::Baboon, rgb, mono);

// Only RGB image is computed

avl::TestImage(avl::TestImageId::Baboon, rgb);

// Only mono image is computed

avl::TestImage(avl::TestImageId::Baboon, atl::NIL, mono);

In-Place Data Processing

Some functions can process data in-place, i.e. modifying the input objects instead of computing new ones. There are two approaches used for such

functions:

1. Some filters, e.g. the image drawing routines, use "io" parameters, which work simultaneously as inputs and outputs. For example, the
following function invocation draws red circles on the image1 object:

avl::DrawCircle(image1, circle, atl::NIL, avl::Pixel(255, 0, 0), style);

2. Some filters, e.g. image point transforms, can be given the same object on the input and on the output. For example, the following function
invocation negates pixel values without allocating any additional memory:

avl::NegateImage(image1, atl::NIL, image1);

Please note, that simple functions like NegateImage can be executed even 3 times faster in-place than when computing a new output object.

Work Cancellation

Most of long-working functions can be cancelled using CancelCurrentWork function. Cancellation technique is thread-safe, so function

CancelCurrentWork can be called from different thread.

To check cancellation status use the IsCurrentWorkCancelled function.

https://docs.adaptive-vision.com/5.3/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.3/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.3/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.3/avl/functions/ImageDrawing/index.html
https://docs.adaptive-vision.com/5.3/avl/functions/ImagePointTransforms/index.html
https://docs.adaptive-vision.com/5.3/avl/functions/ImagePointTransforms/NegateImage.html
https://docs.adaptive-vision.com/5.3/avl/functions/AVLCommon/CancelCurrentWork.html
https://docs.adaptive-vision.com/5.3/avl/functions/AVLCommon/CancelCurrentWork.html
https://docs.adaptive-vision.com/5.3/avl/functions/AVLCommon/IsCurrentWorkCancelled.html

void ProcessingThread()

{

 while (!avl::IsCurrentWorkCancelled())

 {

 std::cout << "Iteration start" << std::endl;

 avl::Delay(10000); // Function with cancellation support

 std::cout << "Iteration complete" << std::endl;

 }

 std::cout << "Processing thread stop" << std::endl;

}

int main()

{

 avl::InitLibrary();

 std::thread thread {ProcessingThread};

 std::cout << "Press Enter to stop execution." << std::endl;

 std::cin.get();

 // Cancel work in ProcessingThread and in avl::Delay

 avl::CancelCurrentWork();

 thread.join();

 return 0;

}

Library Initialization

For reasons related to efficiency and thread-safety, before any other function of the AVL library is called, the InitLibrary function should be called first:

int main()

{

 avl::InitLibrary();

 //...

}

Debug Preview

For diagnostic purposes it is useful to be able to preview data of types Image and Region. You can achieve this by using functions from the Debug

Preview category. They can be helpful in debugging programs and displaying both intermediate and final data of such types.

avl::Image image;

avl::LoadImage("hello.png", false, image);

// Show loaded image in new window.

avl::DebugPreviewShowNewImage(image);

// Wait until window is closed.

avl::DebugPreviewWaitForWindowsClose();

https://docs.adaptive-vision.com/5.3/avl/functions/Configuration/InitLibrary.html
https://docs.adaptive-vision.com/5.3/avl/functions/DebugPreview/index.html

Aurora Template Library

Aurora Vision Library is based on the Aurora Template Library – a simplified counterpart of the C++ Standard Template Library, which avoids

advanced templating techniques mainly by using raw pointers instead of abstract iterators. This makes Aurora Vision Library portable to embedded

platforms, including the ones that do not support C++ templates fully.

Please note, that the following types should only be parametrized with fundamental types (int, float, etc.) or types from avl or atl namespace. Const

and/or reference types are also allowed, as long as template type accepts such type (e.g. Array<T> cannot be parametrized with reference type).

Array<T>

The Array<T> type strictly corresponds to std::vector<T>. It is a random-access, sequential container with automatic memory reallocation when

growing.

Here is a simplified version of the public interface is depicted: Array.h

Optional<T>

The Optional<T> type provides a consistent way of representing an optional value, something for which NULL pointers or special values (such as -1)

are often used. Many APIs provide optional values using default values of parameters. This type is inspired by boost::optional<T> class from the

Boost Library, but is designed mostly for input parameters, not only for function results.

In Aurora Vision Library it is used to represent optional regions of interest in image processing operations and many other input parameters that can

be determined automatically when not provided by an user.

Documentation for this type is presented in Optional.h.

Sample use:

atl::Optional<avl::Point2D> p;

p = avl::Point2D(10, 25); // normal value

p = atl::NIL; // NIL value

if (p != atl::NIL)

{

 avl::Point2D q = p.Get(); // access to a non-nil value

 p.Get().x = 15; // direct access to a field

}

Conditional<T>

This type of data is especially used to determine invalid results. Many functions in C return special value as -1 or NULL when their result is invalid.

Type Conditional<T> is very similar to Optional<T>, but it is mostly used in outputs.

Documentation for this type is presented in Conditional.h.

Sample use:

atl::Conditional<int> result;

avl::ParseInteger("Test1", avl::NumberSystemBase::Base_10, result); // Parsing textual data

if (result != atl::NIL) // If textual data is not valid integer result has value atl::NIL

 printf("Valid integer.");

else

 printf("Invalid integer. Value: %d", result.Get());

Dummy<T>

Dummy<T> class is used to create a temporary object that will be released after its use. It is mostly used to create a temporary object to pass its

reference to a function. Such temporary objects are helpful when not all values returned by a function are important and we don't plan to use them.

Sample use:

avl::Region region;

avl::Circle2D circle = avl::Circle2D(50.0f, 50.0f, 50.0f);

avl::CreateCircleRegion(circle, atl::NIL, 100, 100, region);

// Second parameter is not used.

avl::Segment2D minorAxis;

avl::RegionEllipticAxes(region, atl::Dummy<avl::Segment2D>(), minorAxis);

std::cout << "Minor axis length: " << minorAxis.Length();

https://docs.adaptive-vision.com/5.3/avl/datatypes/TypeReference.html
https://docs.adaptive-vision.com/5.3/avl/datatypes/Array.html
https://www.boost.org/doc/libs/1_47_0/libs/optional/doc/html/index.html
https://docs.adaptive-vision.com/5.3/avl/datatypes/Optional.html
https://docs.adaptive-vision.com/5.3/avl/datatypes/Conditional.html

This article is valid for version 5.3.4

©2007-2023 Aurora Vision

https://www.adaptive-vision.com/

	Aurora Vision Library 5.3
	Introduction

	Overview
	Introduction
	Relation between Aurora Vision Library and Aurora Vision Studio
	Key Features
	Performance
	Modern Design
	Consistency

	Example Program

	Programming Conventions
	Organization of the Library
	Namespaces
	Enumeration Types
	Function Parameters
	Diagnostic Output Parameters
	Optional Outputs
	In-Place Data Processing
	Work Cancellation
	Library Initialization
	Debug Preview

	Aurora Template Library
	Array<T>
	Optional<T>
	Conditional<T>
	Dummy<T>

